\qquad

Section 7-1: Radical Expressions

Warm-up:

Factor the following:

1) 121
2) 100
3) $x^{2}-25$
4) $x^{2}+20 x+100$

Square Roots:

$>\quad$ has a square root of \qquad because \qquad
$>\quad$ has a square root of \qquad because \qquad
> Numbers that would not have real square roots would be....

THINGS TO CONSIDER:

- We will revisit this idea a little later in the year.
> VOCAB: A Principle Square Root is a \qquad .
Examples would include:

> VOCAB: Radical Expressions
Examples would include:
\qquad
\qquad

Section 7-1: Radical Expressions

EXAMPLE PROBLEMS:

1) $\sqrt{121}$
2) $\sqrt{100}$
3) $\sqrt{(x-2)^{2}}$
4) $\sqrt{x^{2}+20 x+100}$
5) $\sqrt{(2 x)^{2}}$
6) $\sqrt{4}$
7) $\sqrt{(2 x+7)^{2}}$
8) $\sqrt{x^{2}+10 x+25}$

Odd and Even Roots:

$>$ We can find more than just the square roots, we can find $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$, etc.. roots.

- \qquad has a cube root of \qquad because \qquad
- \qquad has a cube root of \qquad because \qquad

NOTATION:

This is read as, "the \qquad root of \qquad ."

THINGS TO CONSIDER:

- Why can we get negative cube roots? (Hint: [negative \#] * [negative \#] = ?)
$>$ Odd number roots -
$>$ Even number roots -

