Section 7-7:

Imaginary and Complex Numbers

Presented by, Mr. Kruczinski

Solve for x. Check for extraneous solutions:

1) $\sqrt{x}=16$
2) $\sqrt[3]{x}-2=4$

$$
\begin{aligned}
& (\sqrt{x})^{2}=(16)^{2} \\
& x=256
\end{aligned}
$$

Check.

$$
\begin{gathered}
(\sqrt[3]{x})-2=4 \\
+2+2 \\
(\sqrt[3]{x})=6 \\
(\sqrt[3]{x})^{3}=6^{3}
\end{gathered}
$$

Check

$$
(\sqrt{216})-2=4
$$

Warm-up (\#3)
3)

$$
\begin{gathered}
\sqrt{x-3}=-8 \\
(\sqrt{x-3})^{2}=(-8)^{2} \\
x-3=64 \\
x=67
\end{gathered}
$$

creck:

$$
\begin{gathered}
\sqrt{67-3}=-8 \\
8 x-8
\end{gathered}
$$

(NO solution)

Warm-up (\#4)

$$
\text { 4) } \begin{aligned}
& 6+\sqrt{8-x}=x \\
& 6+(\sqrt{8-x})=x \\
&(\sqrt{8-x})=x-6 \\
&(\sqrt{8-x})^{2}=(x-6)^{2} \\
& 8-x=x^{2}-12 x+36 \\
&=8+x-8+x \\
& 0=x^{2}-11 x+28 \\
& 0=(x-4)(x-7) \\
& x-4=0 \text { or } x-7=0 \quad \text { Cheek.... } \\
& x=4 \text { or } x=7
\end{aligned}
$$

WORKSHEET \#7

- For approximately 8 minutes work on problems : 1,3,7,8,9,10
- If you are done continue on with the worksheet

Imaginary Numbers:

In the set of real numbers, negative numbers do not have square roots

For example:

$$
x^{2}=-1
$$

However, imaginary \#'s were invented so negative numbers could have square roots.

What was created was an "imaginary unit" called:

Powers of " i "

$$
\begin{aligned}
& i=\sqrt{-1}=i \\
& i^{2}=(\sqrt{-1})(\sqrt{-1})=(\sqrt{-1})^{2}=-1 \\
& i^{3}=i \cdot i \cdot i^{2}=i^{2} \cdot i=(-1) \cdot i=-i \\
& i^{4}=i \cdot i \cdot i \cdot i=i^{2} \cdot i^{2}=(-1)(-1)=1 \\
& i^{5}=\underbrace{i \cdot i \cdot i \cdot i \cdot i} \cdot i=i^{4} \cdot i=1 \cdot i=i \\
& i^{6}=\underbrace{i \cdot i \cdot i \cdot i} \cdot \underbrace{i \cdot i}=i^{4} \cdot i^{2}=1 \cdot(-1)=-1
\end{aligned}
$$

Power of " i " [continued)

$$
\begin{aligned}
& i^{6}=i \cdot i \cdot i \cdot i \cdot i \cdot i=i^{4} \cdot i^{2}=1 \cdot(-1)=-1 \\
& i^{7}=i \cdot i \cdot i \cdot i \cdot \cdot \cdot i \cdot i=(1)(1)(i)=-i \\
& i^{8}=i \cdot i \cdot c \cdot i \cdot i \cdot i \cdot i \cdot c=(1)(1)=1 \\
& i^{9}=i \cdot i \cdot i \cdot i \cdot c \cdot c \cdot i=(1)(1)(i) \\
& i^{10}=i \cdot i \cdot i \cdot c i \cdot c \cdot c \cdot i \cdot i=(1)(1)(-1)=-1 \\
& i^{11}=i \cdot i \cdot i \cdot c \cdot c \cdot c \cdot i \cdot i=(1)(1)(-1)(i)=-i
\end{aligned}
$$

Powers of " i " [continued]
There is a short-cut to this pattern...

- Look at the degree, then divide the degree by four.
- Example:

$$
i^{24} \text { love at degree }
$$

$$
\frac{24}{4}=\varphi_{g r u P S} \text { of four }
$$

4 went in evening into 24

$$
\therefore \quad i^{24}=1
$$

Powers of " i " [continued]

- Let us look at another example...

$$
L^{53}
$$

I4 did not go in evenly
It went in 13.25 times, now many i's are left?

$$
53-4(13)=53-52=1
$$

\therefore One i is left

$$
\therefore i^{53}=i
$$

POWERS OF "i" [FINAL SLIDE]
i^{53}

$$
\begin{aligned}
& 13 \\
& 4 \begin{array}{r}
53 \\
-41 \\
13 \\
-12 \\
1 \\
\leftarrow \text { I have } \\
\text { one i left } \\
\text { over: } \\
\therefore \quad i^{53}=i
\end{array}
\end{aligned}
$$

If I got a remainder of, 2

- I would have two " i° left, which is $i^{2}=-1$

If I got a remainder of 3

- I wald have three 'i' left, which is $i^{3}=-i$

On your own attempt the following

$$
\begin{aligned}
& \text { Try } \\
& i^{67} \quad \begin{array}{r}
16 \\
4 \sqrt{67} \\
\frac{-4}{27}
\end{array} \\
& -\frac{24}{3} \rightarrow \text { I have } 3 \text { is remaining } \\
& \therefore i^{3}=-i
\end{aligned}
$$

EXAMPLES (\#1 and \#2)
EXAMPLES:

$$
\text { 1.) } \begin{aligned}
& \sqrt{-5} \\
= & \sqrt{-1 \cdot 5} \\
= & \sqrt{-1} \cdot \sqrt{5} \\
= & i \cdot \sqrt{5} \\
= & \sqrt{5} \cdot i
\end{aligned}
$$

$$
\text { 2.) } \begin{aligned}
& \sqrt{-36} \\
= & \sqrt{-1-36} \\
= & \sqrt{-1} \cdot \sqrt{36} \\
= & i \sqrt{36} \\
= & i \cdot 6 \\
= & 6 i
\end{aligned}
$$

EXAMPLES (\#3 and \#4)

$$
\text { 3.) } \begin{aligned}
& \sqrt{-8} \\
= & \sqrt{-1 \cdot 8} \\
= & \sqrt{-1} \cdot \sqrt{8} \\
& =\frac{4}{4} \\
= & i \cdot 2 \sqrt{2} \\
& =2 \sqrt{2} \cdot i
\end{aligned}
$$

4)

$$
\begin{aligned}
& \sqrt{-7} \\
& =\sqrt{-1 \cdot 7} \\
& =\sqrt{-1} \cdot \sqrt{7} \\
& =i \sqrt{7} \\
& =\sqrt{7} \cdot i
\end{aligned}
$$

Definition

- Imaginary numbers are numbers expressed as
\qquad $b i$. where...

$$
\underbrace{b \cdot \underbrace{c}_{\text {Imaginary }}}_{\text {Real }}
$$

ex. 6 real imaginary

$$
b=6 \quad b \neq 6 i
$$

Multiplying Imaginary Numbers

- CAUTION!!! - Before you multiply you must first: convert to "bi" form
1.) $4 i \cdot 7$
multiply Real
$4.7 \cdot i$
$128 i$
2.) $\sqrt{-3} \cdot 4$
$\sqrt{3} i \cdot 4$

$$
4 \cdot \sqrt{3} i
$$

Multiplying Imaginary Numbers [continued]

$$
\text { 3.) } \begin{array}{cc}
\sqrt{-3} \cdot \sqrt{-5} & \sqrt[4)]{-3} \cdot \sqrt{-3} \\
\sqrt{3} i \cdot \sqrt{5} \cdot i & \sqrt{3} i \cdot \sqrt{3} \cdot i \\
i \cdot i \cdot \sqrt{3} \cdot \sqrt{5} & \sqrt{3} \cdot \sqrt{3} \cdot i \cdot i \\
i^{2} \cdot \sqrt{3 \cdot 5} & \sqrt{3 \cdot 3} \cdot i^{2} \\
-1 \cdot \sqrt{15} & \sqrt{9} \cdot(-1) \\
-\sqrt{15} & 3 \cdot(-1) \\
& -3
\end{array}
$$

Complex Numbers:

- are numbers in the form \qquad $a+b i$, where "a" and "b" are real \#'s

$$
\underbrace{a}_{\text {real }}+\underbrace{b i}_{\text {imaginary }}
$$

- Example:

$$
\begin{aligned}
& 3+\sqrt{3} i \\
& a=3 \\
& b=\sqrt{3} \quad b \neq \sqrt{3} i
\end{aligned}
$$

Write in "a+bi" Form

2.) $\sqrt{4}+\sqrt{-5}$ $2+\sqrt{5} i$

Think of this as ... " $6 x+2 x=8 x$ "

Write in "a+bi" form [Continued]
3.)

$$
\begin{array}{ll}
\because \sqrt{3}+3 \sqrt{6} i & 2-\sqrt{-64} \\
a=2 \sqrt{3} & 2-\sqrt{64} i \\
b=3 \sqrt{6} & 2-8 i \\
& a=2 b=-8
\end{array}
$$

Add or Subtract the following:

$$
\text { 1.) } \left.\begin{array}{rl}
& (1+i)+(2+3 i) \\
= & 2+i+2+3+i)-(3+2 i) \\
= & 1+2+i+3 i
\end{array} \quad 8+i-3-2 i\right)
$$

