M314 Algebra II Day 2

Section 7-7:

Imaginary and Complex Numbers

Presented by,

Mr. Kruczinski

Warm-up (#1 and #2)

Solve for x. Check for extraneous solutions:

1)
$$\sqrt{x} = 16$$

 $(\sqrt{x})^{2}(6)^{2}$
 $x = 256$

2) $\sqrt[3]{x} - 2 = 4$ (35x)-2=4 +2 +2 $(^{3}Sx) = 6$ ({{x}})3:

(Neck: 12/216)-2=4V

Warm-up (#3)

3)
$$\sqrt{x-3} = -8$$

 $(\sqrt{x-3})^2 = (-8)^2$
 $\times -3 = 64$
 $\times = 67$
Check:
 $\sqrt{67-3} = -8$
 $(No solution)$

Warm-up (#4)

4) 6 + $\sqrt{8 - x} = x$ 6+(V8-x)=x (J8-x)=x-6 $(\sqrt{3-x})^2 = (+-6)^2$ $8 - x = x^2 - 12x + 36$ 3 + x = -8 + x $0 = x^2 - 11x + 28$ 0 = (x - 4)(x - 7)x-4=0 or x-7=0 x=4 or x=7

Cheek x=71

WORKSHEET #7

- For approximately 8 minutes work on problems : 1,3,7,8,9,10
- If you are done continue on with the worksheet

Imaginary Numbers:

In the set of real numbers, negative numbers do not have square roots

For example:
$$X^2 = -1$$
 does not have a real solution

However, maginary #3 were invented so negative numbers could have square roots.

What was created was an "imaginary unit" called:

Powers of "i"

Powers of "i" [continued]

There is a short-cut to this pattern...

- Look at the degree, then divide the degree by four.
- Example:

ioux at degree $\frac{24}{4} = 6$ ours of four 4 went in evening into 24 $\therefore i^{24} = 1$

Powers of "i" [continued]

 Let us look at another example... .53 E4 did not go in evening It went in 13.25 times 53-4(13)=53-52= 1 . One i is left :. i⁵³=i

POWERS OF "i" [FINAL SLIDE]

$$\frac{13}{4 \sqrt{53}}$$

$$-\frac{1}{4 \sqrt{53}}$$

$$-\frac{1}{4 \sqrt{53}}$$

$$-\frac{1}{4 \sqrt{53}}$$

$$-\frac{1}{2}$$

$$\frac{1}{\sqrt{7}}$$

$$-\frac{1}{2}$$

$$\frac{1}{\sqrt{7}}$$

$$-\frac{1}{2}$$

$$\frac{1}{\sqrt{7}}$$

$$\frac{1}{\sqrt$$

On your own attempt the following

$$\frac{16}{167} + \frac{16}{27} - \frac{24}{3} \rightarrow I have 3 is remaining}$$

EXAMPLES (#1 and #2)

EXAMPLES: 2.) 1-36 1.) -5 = 5-1-36 = 5-1.5 = 5-1.55 = 5-1.536 = 1.55 = 136 = 5·i = (-6 = 6i

EXAMPLES (#3 and #4)

4) J-7 ' 3.) 5-8' = 5-1.7 = 1-1-8 = 5-7.57 = 1-1.18 = 157 = 57.1 = (. 202 1=252.1

Definition

Imaginary numbers are numbers expressed as
 ______. where...

Real Imaginary ex. imaginary real

Multiplying Imaginary Numbers

- CAUTION!!! Before you multiply you must first: convert to "bi" Form.
 - 1.) $Hi \cdot T$ Multiply Real $J3i \cdot 4$ 4.7.i 2.) $J-3 \cdot 4$ $J3i \cdot 4$ $H\cdot J3i$ $H\cdot J3i$

Multiplying Imaginary Numbers [continued] $3.) \sqrt{-3} \cdot \sqrt{-5}$ $4) \sqrt{-3} \cdot \sqrt{-3}$ J31. J51 J31. J31. 1.1.53.55 53.53.60 12. 13.5 J3.3.i2 59.(-1) -1. 515 3.(-1)

Complex Numbers:

- are numbers in the form "a" and "b" are real #'s
- **a+bi**, where

• Example: 3+53ia=3b=53 $b\neq 53i$

Write in "a+bi" Form

Write in "a+bi" form [Continued]

3.) 203+356 (4) 2-5-64 a=253 b= 356 12-81 a=2 b=-2

Add or Subtract the following:

1.) $(1+i)+(2+3i)$	2.)(8+i)-(3+ai)
= 1+1+2+31	8+1-3-21
= 1+2+i+3i	15 - i
= 3+4i	a = 5 b = -1
a=3 b= M	~~ · ·