\qquad

Section 7-7: Imaginary and Complex Numbers

Warm-up:

Solve for x. Check for extraneous solutions:

1) $\sqrt{x}=16$
2) $\sqrt[3]{x}-2=4$
3) $\sqrt{x-3}=-8$
4) $6+\sqrt{8-x}=x$

Imaginary Numbers:

In the set of real numbers, negative numbers do not have square roots...

For example:

However, \qquad were invented so negative numbers could have square roots. What was created was an "imaginary unit" called \qquad .

Powers of " i ":

$i=$	$i^{9}=$
$i^{2}=$	$i^{10}=$
$i^{3}=$	$i^{11}=$
$i^{5}=$	$i^{12}=$
$i^{6}=$	$:$
$i^{7}=$	$i^{56}=$
$i^{8}=$	$i^{67}=$

$>$ What patterns do you see occurring?
$>$ How can we use this pattern to determine the value of $i^{\text {very large power }}$?
\qquad

Section 7-7: Imaginary and Complex Numbers

EXAMPLES:

1.)
2.)
3.)
4)

Definition:

Imaginary numbers are numbers expressed as \qquad , where

Multiplying Imaginary Numbers:

CAUTION!!! - Before you multiply you must first: \qquad .
1.)
2.)
3.)
4)
\qquad
\qquad

Section 7-7: Imaginary and Complex Numbers

Complex Numbers:

\square
Write in a + bi form:
1.)
2.)
3.)
4)

Add or subtract the following:
1.)
2.)
3.)
4)
[if there is time] Multiply the following:

RECALL:

1.)
2.)
3.)
4)

