\qquad
\qquad

Section 8-1: Solving Quadratics by Factoring and Completing the Square

Warm-up:

1) State the Quadratic Formula and what it is used for...

Find the discriminate and find the number and type of solutions to the quadratic. (DO NOT SOLVE)
2) $3 x^{2}+6 x+3=0$
3) $6 x^{2}+5 x-6=0$
4) $2 x^{2}+1=0$

Solving Quadratics by FACTORING:

Solve by factoring...

REVIEW 1) $8 x-32=0$ 2) $4 x-20=0$	
$4 x^{2}+3 x=0$	5) $x^{2}+7 x+12=0$

\qquad
\qquad Block: \qquad

Section 8-1: Solving Quadratics by Factoring and Completing the Square

Solving Equations by Completing the square:

RECALL:

> The Square Root Method:

$$
(x-1)^{2}=16
$$

Our GOAL for these problems is to add some number to $\boldsymbol{a} x^{2}+\boldsymbol{b} x$, so that we factor it into a perfect square such as (x-"some number") ${ }^{2}$.

Let us complete the square for... $x^{2}+\mathbf{2 0} x$

1. We want to look at the coefficient of the " x " term. In this case it is \qquad .
2. Divide this coefficient by two. In this case it is \qquad .
3. Square of this number. In this case it is \qquad .
4. Add this number to your original polynomial and factor: In this case it is \qquad .

Another way to view it...

EXAMPLE
Complete the Square.

1) $x^{2}+16 x+$
2) $x^{2}+10 x+$
3) $x^{2}-18 x+$ \qquad
\qquad

Section 8-1: Solving Quadratics by Factoring and Completing the Square
Let us apply this knowledge to solving quadratic equations.
Solve by completing the square

1) $x^{2}+12 x+11=0$
2) $x^{2}+12 x-13=0$
3) $x^{2}-6 x-3=0$
