Name:	Date:	Block:

<u>Section 8-1:</u> Solving Quadratics by Factoring and Completing the Square

Warm-up:

1) State the Quadratic Formula and what it is used for...

Find the discriminate and find the number and type of solutions to the quadratic. (**DO NOT SOLVE**)

2) $3x^2 + 6x + 3 = 0$ 3) $6x^2 + 5x - 6 = 0$ 4) $2x^2 + 1 = 0$

Solving Quadratics by FACTORING:

Solve by factoring...

REVIEW
1)
$$8x - 32 = 0$$

2) $4x - 20 = 0$
3) $(x + 8)(x - 4) = 0$
4 $x^{2} + 3x = 0$
5) $x^{2} + 7x + 12 = 0$
6) $x^{2} - 4 = 0$

Name:	Date:	Block:

Section 8-1: Solving Quadratics by Factoring and Completing the Square

Solving Equations by Completing the square:

$$(x-1)^2 = 16$$

Our **GOAL** for these problems is to add some number to $ax^2 + bx$, so that we factor it into a perfect square such as $(x-"some number")^2$.

Let us complete the square for ... $x^2 + 20x$

- 1. We want to look at the coefficient of the "x" term. In this case it is _____.
- 2. Divide this coefficient by two. In this case it is _____.
- 3. Square of this number. In this case it is _____.
- 4. Add this number to your original polynomial and factor: In this case it is

Another way to view it...

EXAMPLE Complete the Square. 1) $x^2 + 16x +$ 2) $x^2 + 10x +$ 3) $x^2 - 18x +$

Section 8-1: Solving Quadratics by Factoring and Completing the Square

Let us apply this knowledge to solving quadratic equations.

Solve by completing the square

1) $x^{2} + 12x + 11 = 0$ 2) $x^{2} + 12x - 13 = 0$ 3) $x^{2} - 6x - 3 = 0$