Name:	Date:	Block:
	<u>REVIEW</u> CHAPTER 8	
SQUARE ROOT METHOD		
Solve the following using the squa	re root method	
1. $x^2 = 81$	2. $x^2 + 2 = 66$	3. $(x+3)^2 - 5 = 20$
➢ DO DAY 4 REVIEW NO	TESHEET 1-11 odd	
QUADRATIC FORMULA:		
The STANDARD FORM for a Q	UADRATIC equation is	·
Put the following in STANDARD	FORM and state the "a", "b", and	l "c" value
1. $4x^2 - 2 = 81x$	2. $x^2 + 3x - 1 = 13$	3. $4x^2 = 15x - 45$
a=	a=	a=
b= c=	b= c=	b= c=
		2
following formula	ation with complex coefficients, a	$x^{-} + \boldsymbol{b}x + \boldsymbol{c} = 0$, are given by the

EXAMPLE:

c=_

Use the Quadratic Formula to solve the equation below:

$$x^{2} - 4x - 21 = 0$$

a=______b=____

> DO DAY 4 REVIEW NOTESHEET 13,14,15-21 odd

<u>REVIEW</u> CHAPTER 8

THE DISCRIMINANT:

The expression ______ in the quadratic formula is called the discriminant.

Given an equation $ax^2 + bx + c = 0$, with $a \neq 0$, and all the coefficients are real numbers then when

1. $b^2 - 4ac$ is equal to ZERO, then there is _____

2. $b^2 - 4ac$ is POSITIVE, then there are _____

3. $b^2 - 4ac$ is NEGATIVE, then there are _____

Find the discriminant and find the number and type of solutions (1 real, 2 real, or 2 imaginary) **DO NOT** SOLVE

 $6x^2 - 2x + 2 = 0$

▶ DO DAY 4 REVIEW NOTESHEET #44-52 evens

SOLVE BY FACTORING:

Solve by factoring 1. $x^2 - 7x = 0$ 2. $x^2 - 4x - 21 = 0$

DO DAY 4 REVIEW NOTESHEET #27-29, 31,32,33

SOLVE BY COMPLETING THE SQUARE:

4) Solve by completing the square

$$x^2 - 4x - 12 = 0$$

DO DAY 4 REVIEW NOTESHEET #36-42 evens