\qquad

REVIEW CHAPTER 8

SQUARE ROOT METHOD

Solve the following using the square root method...

1. $x^{2}=81$
2. $x^{2}+2=66$
3. $(x+3)^{2}-5=20$
> DO DAY 4 REVIEW NOTESHEET 1-11 odd

QUADRATIC FORMULA:

The STANDARD FORM for a QUADRATIC equation is \qquad .

Put the following in STANDARD FORM and state the " a ", " b ", and " c " value...

1. $4 x^{2}-2=81 x$
2. $x^{2}+3 x-1=13$
3. $4 x^{2}=15 x-45$
$\mathrm{a}=$ \qquad
$\mathrm{b}=$
$c=$
$\mathrm{a}=$ \qquad
b=
\qquad
$\mathrm{a}=$ \qquad
$\mathrm{b}=$
c= \qquad

The solutions of any quadratic equation with complex coefficients, $\boldsymbol{a} x^{2}+\boldsymbol{b} x+\boldsymbol{c}=0$, are given by the following formula...

EXAMPLE:

Use the Quadratic Formula to solve the equation below:

$$
x^{2}-4 x-21=0
$$

$a=$ \qquad
$\mathrm{b}=$ \qquad
c= \qquad

DO DAY 4 REVIEW NOTESHEET 13,14,15-21 odd
\qquad

REVIEW CHAPTER 8

THE DISCRIMINANT:

The expression \qquad in the quadratic formula is called the discriminant.

Given an equation $\boldsymbol{a} x^{2}+\boldsymbol{b} x+\boldsymbol{c}=0$, with $\boldsymbol{a} \neq 0$, and all the coefficients are real numbers then when

1. $b^{2}-4 a c$ is equal to ZERO, then there is \qquad
2. $b^{2}-4 a c$ is POSITIVE, then there are \qquad
3. $b^{2}-4 a c$ is NEGATIVE, then there are \qquad

Find the discriminant and find the number and type of solutions (1 real, 2 real, or 2 imaginary) $\underline{\text { DO NOT }}$ SOLVE
$6 x^{2}-2 x+2=0$

DO DAY 4 REVIEW NOTESHEET \#44-52 evens

SOLVE BY FACTORING:

Solve by factoring

1. $x^{2}-7 x=0$
2. $x^{2}-4 x-21=0$

DO DAY 4 REVIEW NOTESHEET \#27-29, 31,32,33

SOLVE BY COMPLETING THE SQUARE:

4) Solve by completing the square

$$
x^{2}-4 x-12=0
$$

