### Section 9-4 and 9-5: Graphing Parabolas

### **Graphs of Quadratic Functions**

A **<u>quadratic function</u>** is a function that can be described as...

# Consider the following graph of $f(x) = x^2$



## Section 9-4 and 9-5: Graphing Parabolas

# The Standard form for Quadratic Functions

 $f(x) = a (x - h)^2 + k$ 

We like this form of the function because we can quickly get the information below...

| Vertex           |  |
|------------------|--|
| Line of Symmetry |  |
| Opens up         |  |
| Onone down       |  |
| Opens down       |  |

Examples:

1.  $f(x) = 2(x-3)^2 + 5$ 

| a. What is the vertex?           |  |
|----------------------------------|--|
| b. What is the line of symmetry? |  |
| c. Opens up or down              |  |

2.  $f(x) = -(x-2)^2 + 3$ 

| a. What is the vertex?           |  |
|----------------------------------|--|
| b. What is the line of symmetry? |  |
| c. Opens up or down?             |  |

#### Section 9-4 and 9-5: Graphing Parabolas

#### **Graph the following:**



# Section 9-4 and 9-5:Graphing Parabolas

### Finding the y-intercepts of a Quadratic Function

> Below is the graph for  $f(x) = (x - 2)^2 + 2$ 



- a) State the Vertex: ( \_\_\_\_\_ , \_\_\_\_ )
- b) Locate and state the y-intercept: ( \_\_\_\_\_, \_\_\_\_)
- c) How can we find the y-intercept without using a graph? [Hint: What is the x-coordinate of the y-intercept?]

## Finding the x-intercepts of a Quadratic Function

For the following graphs answer the following questions

- a) State the Vertex
- b) Locate and state the x-intercept(s)



How can we find the x-intercept(s) without using a graph? [Hint: What is the y-coordinate of the x-intercept?]