\qquad
\qquad

Section 9-4 and 9-5:Graphing Parabolas

Graphs of Quadratic Functions

A quadratic function is a function that can be described as...

Consider the following graph of $f(x)=x^{2}$

This shape is called a \qquad .

This is considered the line [or axis] of \qquad It can be expressed as...

This point is called the \qquad . We can notate it as \qquad .

What is the domain of this function? \qquad
What is the range of this function? \qquad

Example \#1:

Vertex: \qquad
Axis of Symmetry: \qquad
Minimum/Maximum Value: \qquad

Example \#2:

Vertex: \qquad
Axis of Symmetry: \qquad

Minimum/ Maximum Value:

\qquad
\qquad

Section 9-4 and 9-5:Graphing Parabolas

The Standard form for Quadratic Functions

$$
\mathrm{f}(\mathrm{x})=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+k
$$

We like this form of the function because we can quickly get the information below...

Vertex	
Line of Symmetry	
Opens up	
Opens down	

Examples:

1. $f(x)=2(x-3)^{2}+5$

a. What is the vertex?	
b. What is the line of	
symmetry?	

2. $f(x)=-(x-2)^{2}+3$

a. What is the vertex?	
b. What is the line of	
symmetry?	

\qquad Date: \qquad Block: \qquad

Section 9-4 and 9-5:Graphing Parabolas

Graph the following:

VERTEX:
AXIS of SYM: \qquad OPENS: \qquad
Min or Max: \qquad

VERTEX: \qquad
AXIS of SYM: \qquad OPENS:
Min or Max: \qquad

VERTEX:
AXIS of SYM: \qquad OPENS: \qquad
Min or Max: \qquad

VERTEX: AXIS of SYM:
OPENS: \qquad
Min or Max: \qquad
5. $\mathrm{f}(\mathrm{x})=-\mathrm{x}^{2}-3$
VERTEX: \qquad
AXIS of SYM: \qquad OPENS:
Min or Max: \qquad

VERTEX: \qquad AXIS of SYM: \qquad OPENS: \qquad Min or Max: \qquad
\qquad
\qquad
\qquad

Section 9-4 and 9-5:Graphing Parabolas

Finding the y-intercepts of a Quadratic Function

$>$ Below is the graph for $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)^{2}+2$

a) State the Vertex: \qquad
\qquad)
b) Locate and state the y-intercept: \qquad , \qquad)
c) How can we find the y-intercept without using a graph? [Hint: What is the x-coordinate of the y intercept?]

Finding the x-intercepts of a Quadratic Function

For the following graphs answer the following questions
a) State the Vertex
b) Locate and state the x-intercept(s)

1. $f(x)=x^{2}-4$

2. $f(x)=x^{2}$

3. $f(x)=x^{2}+3$

a) \qquad a) \qquad
a) \qquad
b) \qquad
b) \qquad
b) \qquad

How can we find the x -intercept(s) without using a graph? [Hint: What is the y-coordinate of the x-intercept?]

