\qquad
\qquad
\qquad

Investigation: Mirror, Mirror

Description: Choose a tall object with a height that would be difficult to measure directly, such as a football goalpost, a basketball hoop, a flagpole, or the height of your classroom

Materials:
$>$ meter sticks
> masking tape or a soluble pen
$>$ a mirror

Step 1: Mark crosshairs on your mirror. Use tape or a soluble pen. Call the intersection point x. Place the mirror on the ground several meters from your object.

Step 2: An observer should move to a point P in line with the object and the mirror in order to see the reflection of an identifiable point F at the top of the object at point x on the mirror. Make a sketch of your setup, like this one.

Step 3: Measure the distance $\overline{P X}$ and the distance from X to a point B at the base of the object directly below F. Measure the distance from P to the observer's eye level, E.
\qquad
$\mathrm{m} \overline{P X}=$
$\mathrm{m} \overline{P E}=$
Step 4: Think of $\overline{F X}$ as a light ray that bounces back to the observer's eye along $\overline{X E}$. Why is $\angle B \cong \angle P$? Name two similar triangles. Tell why they are similar.

Step 5: Set up a proportion using corresponding sides of similar triangles. Use it to calculate $F B$, the approximate height of the tall object.

Step 6: (On the back of this Paper) Write a summary of what you and your group did in this investigation. Discuss possible causes for error.

