$\qquad$
$\qquad$

## Investigation 1: Is AA a Similarity Shortcut?

1. Draw any triangle $A B C$.
2. Construct a second triangle, DEF; with $<D \cong<A$ and $<E \cong<B$. What will be true about $<C$ and $<F$ ? Why?
$\qquad$
$\qquad$
3. Carefully measure the lengths of the sides of both triangles. Compare the ratios of the corresponding sides. Is $\frac{A B}{D E} \approx \frac{A C}{D F} \approx \frac{B C}{E F}$ ?
$\qquad$
$\qquad$
4. Compare your results with the results of others near you. State your findings as a conjecture:
$\qquad$
$\qquad$
5. What theorem can be used to help prove your conjecture above? Explain.
6. What similarity shortcuts do we not have to investigate? Why?
$\qquad$
$\qquad$

# Investigation 2: Is SSS a similarity Shortcut? 

1. Draw any triangle $A B C$.
2. Construct a second triangle, DEF, Whose side length are a multiple of the original triangle.
3. Compare the corresponding angles of the two triangles.
4. Compare your results with the results of others near you and state a conjecture.

## Investigation 3: Is SAS a Similarity Shortcut?

1. Construct two different triangles that have two pairs of sides proportional and pair of included angles equal in measure. (You may use $\triangle A B C$ from investigation \#2, just construct a new $\triangle D E F$ )
2. Compare the measures of corresponding sides and corresponding angles.
3. Share your results with others near you and state a conjecture
