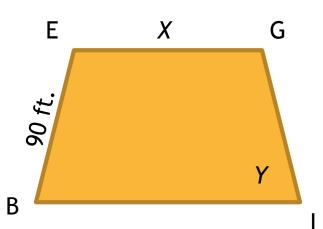

### SIMILAR TRIANGLES

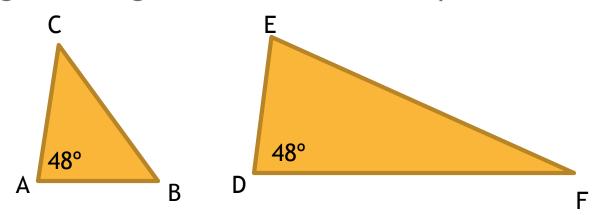

Mr. Kruczinski

# SIMILAR POLYGONS -- REVIEW

- What are the properties of similar polygons?
  - They have congruent angles.
  - Their sides are proportional
- We can find missing measurement with similar polygons...

SMAL~BIGE Find X and Y

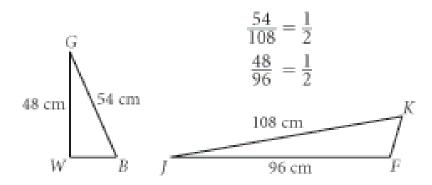





## SO...WHY DO WE CARE ABOUT SIMILAR TRIANGLES?

- Triangles have special properties
  - They have congruence shortcuts:
    - SSS "Side-Side-Side"
    - SAS "Side-Angle-Side"
    - AAS "Angle-Angle-Side"
    - ASA- "Angle-Side-Angle"
  - Could they have similarity shortcuts?
    - What would the "Side" part of similarity shortcuts mean?
      - "Side" in this case means that the corresponding sides in each triangle would have the same proportion.

#### WILL JUST "ANGLE" WORK?


- Is knowing just one corresponding pair of congruent angles enough to prove similarity?
  - Sketchpad—demonstration
  - No, knowing just one corresponding pair of congruent angles is inconclusive to prove similarity.



 $\angle A \cong \angle D$ , but  $\triangle ABC$  is not similar to  $\triangle DEF$  or to  $\triangle DFE$ .

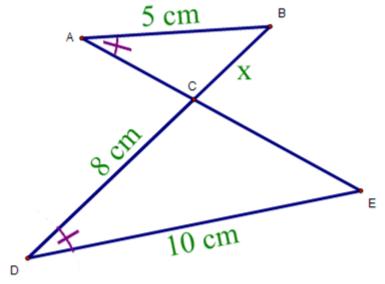
#### WILL "SIDE-SIDE" WORK?

- Are two triangles similar if given that two sets of corresponding sides are proportional?
  - Sketchpad example
  - No, knowing that two triangles have two sets of corresponding side are proportional is inconclusive to prove similarity.



 $\frac{GB}{JK} = \frac{GW}{JF}$ , but  $\triangle GWB$  is not similar to  $\triangle JFK$ .

#### INVESTIGATIONS


- Start investigations individually, but share your results with your partner.
  - As partners, come up with a clear and concise conjecture about each investigation.
  - Start with the investigation that is next to your name. (You are still required to do all of them)

| Group                                                           |                             |
|-----------------------------------------------------------------|-----------------------------|
| Mitchell D., Allie, Jimmy M.,<br>Chris, Sarah, Ashlee, Mitch S. | Start with investigation #1 |
| Evan, Mike, Jim S., Tim,<br>Alexander L., Ethan                 | Start with investigation #2 |
| Steven, Shristi, Deanna, Kiara,<br>Alex C., Elijah              | Start with investigation #3 |

#### EXIT SLIP

Using the figure below answer the following

questions:



- 1. Prove that  $\triangle ABC \sim \triangle DEC$  using one of the similarity short cuts. Quickly explain how you came to that conclusion.
- 2. Find the value of X.